Skip to content

Introduction

Introduction

fig:system fig:system

Figure 1: Layout of experiment a) Pulses from a 1539.47 nm mode locked laser (Pritel UOC) are split into two by an 80-ps delay-line interferometer before up-conversion and amplification in a second harmonic generation + erbium doped fiber amplifier (SHG + EDFA) module (Pritel). A short PM fiber from the SHG module connects to a nonlinear crystal generating photon pairs by spontaneous parametric down-conversion (SPDC). The coarse wavelength division multiplexing (CWDM) module separates the photon pair spectrum into eight 13 nm-wide bands around 1530 and 1550 nm, for the signal and idler photon, respectively. The signal and idler are directed to the Bob and Alice stations, respectively. The readout interferometers introduce the same time delay as the source interferometer. Polarization controllers are used to maximize the coincidence rates, as the detection efficiencies of each SNSPD is polarization sensitive (\(\pm20\%\)). Entanglement visibility is unaffected by readout polarization. 100 GHz spacing Dense wavelength division multiplexer (DWDM) modules are used to direct each frequency channnel into a distinct fiber. Two superconducting nanowire single photon detectors (SNSPDs) are used to measure a specific frequency multiplexed channel pair. Measurements for different multiplexed channels are performed in succession to resolve full system performance. b) ITU channels used in the experiment. Pairs of channels highlighted with the same color obey the phase and pump-energy matching condition for SPDC. To asses the full 16 channels (27-42) of Alice’s DWDM multiplexer, Bob’s 8-channel DWDM is replaced with a narrowband filter with tunable resonance frequency (not shown in figure).

Entangled photons play a vital role in the development of quantum information processing and communication systems 123456. The ability to generate entangled photon pairs at a high rate is essential for establishing reliable and scalable quantum networks with quantum repeaters, as well as for implementing entanglement-based quantum key distribution (QKD) systems 78910. Unlike QKD implementations that rely on attenuated lasers 1112 entanglement distribution systems may fulfill the objectives of QKD while also serving as the foundation for advanced quantum networks that rely on entanglement as a fundamental resource.

Entanglement distribution and entanglement-based QKD have been demonstrated with impressive performance across a number of metrics. These include 40 kbps data rates in a QKD system deployed over 50 km of fiber 17 as well as multiple polarization entangled sources that leverage spectral multiplexing. These polarization sources include a demonstration of 181 kebits/s across 150 ITU channel pairs and a high-throughput source potentially capable of gigabit rates with many added channels and detectors 1819. Multiple works have highlighted the need to leverage high total brightness, spectral brightness, collection efficiency, and visibility from pair-generating non-linear crystals to realize practical high-rate entanglement distribution 19202122232425.

A time-bin entangled photon source has certain advantages over a polarization-based system 26. Time-bin entanglement can be measured with no moving hardware and does not require precise polarization tracking to maximize visibility 2728. Also, with suitable equipment, robust time-bin modulation is possible over free space links with turbulence 29. Therefore, the possibility of simplified fiber-to-free-space interconnects and larger quantum networks based on a shared time-bin protocol motivates development of improved time-bin sources. Furthermore, time-bin encoding is suited for single-polarization light-matter interfaces 3031.

We direct 4.09 GHz mode locked laser light into a nonlinear crystal via 80-ps delay-line interferometers (12.5 GHz free-spectral range) to realize a high-rate entanglement source. The ability to resolve time-bin qubits into 80 ps wide bins is enabled by newly developed low-jitter differential superconducting nanowire single-photon detectors (SNSPDs) 32. Wavelength multiplexing is used to realize multiple high visibility channel pairings which together sum to a high coincidence rate. Each of the pairings can be considered an independent carrier of photonic entanglement 3334 and therefore the system as a whole is applicable to flex-grid architectures through the use of wavelength selective switching 3536. However, we focus on maximizing the rate between two receiving stations, Alice and Bob (Fig. \ref{fig:system}a). Each station is equipped with a DWDM that separates the frequency multiplexed channel into multiple fibers for detection. The SNSPDs are used with a real-time pulse pileup and time-walk correction technique 37 to keep jitter low even at high count rates.

We quantify per-channel brightness and visibility as a function of pump power, as well as collection efficiencies, coincidence rates across 8 channel pairs, and expected performance of a partially realized 16-channel pair configuration. We show that the 8 channel system achieves visibilities that average to 99.3% at low mean photon number \(\mu_{L} = 5.6{\times} 10^{-5}\,\pm\,9{\times} 10^{-6}\). At a higher power (\(\mu_{H} = 5.0{\times} 10^{-3}\,\pm\,3{\times} 10^{-4}\)), we demonstrate a total coincidence rate of 3.55 MHz with visibilities that average to 96.6%. Through quantum state tomography we bound the distillable entanglement rate of the system to between 69% and 91% of the \(\mu_{H}\) coincidence rate (2.46 - 3.25 Mebits/s).

Quantifying a source’s spectral mode purity is important for gauging its utility in advanced quantum networks that rely on interferometric measurements like two-photon interference which enables Bell-state measurements (BSM) 38. With Schmidt decomposition we quantify the modal purity of single DWDM channel pairs and derive the inverse Schmidt number which serves as an estimate for two-photon interference visibility between two such sources. Ultimately, we demonstrate that an entanglement generation source of this design makes for a robust and powerful building block for future high-rate quantum networks.


  1. Nielsen, M. A., & Chuang, I. L. (2010). <i>Quantum computation and quantum information</i>. Cambridge University Press. 

  2. Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., & O’Brien, J. L. (2010). <b>Quantum computers</b>. <i>nature</i>, <i>464</i>(7285), 45–53. 

  3. Gisin, N., & Thew, R. (2007). <b>Quantum communication</b>. <i>Nature Photonics</i>, <i>1</i>(3), 165–171. 

  4. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., & Braunstein, S. L. (2015). <b>Advances in quantum teleportation</b>. <i>Nature Photonics</i>, <i>9</i>(10), 641–652. 

  5. Briegel, H.-J., Dür, W., Cirac, J. I., & Zoller, P. (1998). <b>Quantum repeaters: The role of imperfect local operations in quantum communication</b>. <i>Physical Review Letters</i>, <i>81</i>(26), 5932. 

  6. Kimble, H. J. (2008). <b>The quantum internet</b>. <i>Nature</i>, <i>453</i>(7198), 1023–1030. 

  7. Sangouard, N., Simon, C., Riedmatten, H. de, & Gisin, N. (2011). <b>Quantum repeaters based on atomic ensembles and linear optics</b>. <i>Review Mod. Physics</i>, <i>83</i>(1), 33–80. 

  8. Ma, X., Fung, C.-H. F., & Lo, H.-K. (2007). <b>Quantum key distribution with entangled photon sources</b>. <i>Physical Review A</i>, <i>76</i>(1), 012307. 

  9. Ribordy, G., Brendel, J., Gautier, J.-D., Gisin, N., & Zbinden, H. (2000). <b>Long-distance entanglement-based quantum key distribution</b>. <i>Physical Review A</i>, <i>63</i>(1), 012309. 

  10. Yin, J., Cao, Y., Li, Y.-H., Ren, J.-G., Liao, S.-K., Zhang, L., Cai, W.-Q., et al. (2017). <b>Satellite-to-ground entanglement-based quantum key distribution</b>. <i>Physical Review Letters</i>, <i>119</i>(20), 200501. 

  11. Sasaki, M., Fujiwara, M., Ishizuka, H., Klaus, W., Wakui, K., Takeoka, M., Miki, S., et al. (2011). <b>Field test of quantum key distribution in the tokyo qkd network</b>. <i>Optics Express</i>, <i>19</i>(11), 10387–10409. 

  12. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N., & Peev, M. (2009). <b>The security of practical quantum key distribution</b>. <i>Reviews of Modern Physics</i>, <i>81</i>(3), 1301. 

  13. Islam, N. T., Lim, C. C. W., Cahall, C., Kim, J., & Gauthier, D. J. (2017). <b>Provably secure and high-rate quantum key distribution with time-bin qudits</b>. <i>Science Advances</i>, <i>3</i>(11), e1701491. doi:10.1126/sciadv.1701491 

  14. Yuan, Z., Plews, A., Takahashi, R., Doi, K., Tam, W., Sharpe, A. W., Dixon, A. R., et al. (2018). <b>10-mb/s quantum key distribution</b>. <i>Journal of Lightwave Technology</i>, <i>36</i>(16), 3427–3433. doi:10.1109/JLT.2018.2843136 

  15. Zhong, T., Zhou, H., Horansky, R. D., Lee, C., Verma, V. B., Lita, A. E., Restelli, A., et al. (2015). <b>Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding</b>. <i>New Journal of Physics</i>, <i>17</i>(2), 022002. doi:10.1088/1367-2630/17/2/022002 

  16. Grünenfelder, F., Boaron, A., Resta, G. V., Perrenoud, M., Rusca, D., Barreiro, C., Houlmann, R., et al. (2023). <b>Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems</b>. <i>Nature Photonics</i>, <i>17</i>(5), 422–426. doi:10.1038/s41566-023-01168-2 

  17. Pelet, Y., Sauder, G., Cohen, M., Labonté, L., Alibart, O., Martin, A., & Tanzilli, S. (2022). <b>Operational entanglement-based quantum key distribution over 50 km of real-field optical fibres</b>. <i>arXiv:2207.14707</i>. Retrieved from https://arxiv.org/abs/2207.14707 

  18. Alshowkan, M., Lukens, J. M., Lu, H.-H., Kirby, B. T., Williams, B. P., Grice, W. P., & Peters, N. A. (2022). <b>Broadband polarization-entangled source for c+L-band flex-grid quantum networks</b>. <i>Optics Letters</i>, <i>47</i>(24), 6480–6483. doi:10.1364/OL.471363 

  19. Neumann, S. P., Selimovic, M., Bohmann, M., & Ursin, R. (2022). <b>Experimental entanglement generation for quantum key distribution beyond 1 Gbit/s</b>. <i>Quantum</i>, <i>6</i>, 822. doi:10.22331/q-2022-09-29-822 

  20. Atzeni, S., Rab, A. S., Corrielli, G., Polino, E., Valeri, M., Mataloni, P., Spagnolo, N., et al. (2018). <b>Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits</b>. <i>Optica</i>, <i>5</i>(3), 311–314. 

  21. Sun, C.-W., Wu, S.-H., Duan, J.-C., Zhou, J.-W., Xia, J.-L., Xu, P., Xie, Z., et al. (2019). <b>Compact polarization-entangled photon-pair source based on a dual-periodically-poled ti: LiNbO 3 waveguide</b>. <i>Optics Letters</i>, <i>44</i>(22), 5598–5601. 

  22. Liu, W.-Z., Li, M.-H., Ragy, S., Zhao, S.-R., Bai, B., Liu, Y., Brown, P. J., et al. (2021). <b>Device-independent randomness expansion against quantum side information</b>. <i>Nature Physics</i>, <i>17</i>(4), 448–451. 

  23. Kaiser, F., Ngah, L. A., Issautier, A., Delord, T., Aktas, D., De Micheli, M., Kastberg, A., et al. (2014). <b>Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry</b>. <i>Optics Communications</i>, <i>327</i>, 7–16. 

  24. Anwar, A., Perumangatt, C., Steinlechner, F., Jennewein, T., & Ling, A. (2021). <b>Entangled photon-pair sources based on three-wave mixing in bulk crystals</b>. <i>Review of Scientific Instruments</i>, <i>92</i>(4). 

  25. Neumann, S. P., Scheidl, T., Selimovic, M., Pivoluska, M., Liu, B., Bohmann, M., & Ursin, R. (2021). <b>Model for optimizing quantum key distribution with continuous-wave pumped entangled-photon sources</b>. <i>Physical Review A</i>, <i>104</i>(2), 022406. 

  26. Marcikic, I., Riedmatten, H. de, Tittel, W., Scarani, V., Zbinden, H., & Gisin, N. (2002). <b>Time-bin entangled qubits for quantum communication created by femtosecond pulses</b>. <i>Physical Review A</i>, <i>66</i>(6), 062308. 

  27. Li, D.-D., Gao, S., Li, G.-C., Xue, L., Wang, L.-W., Lu, C.-B., Xiang, Y., et al. (2018). <b>Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback</b>. <i>Optics Express</i>, <i>26</i>(18), 22793–22800. doi:10.1364/OE.26.022793 

  28. Fitzke, E., Bialowons, L., Dolejsky, T., Tippmann, M., Nikiforov, O., Walther, T., Wissel, F., et al. (2022). <b>Scalable network for simultaneous pairwise quantum key distribution via entanglement-based time-bin coding</b>. <i>PRX Quantum</i>, <i>3</i>(2), 020341. doi:10.1103/PRXQuantum.3.020341 

  29. Jin, J., Bourgoin, J.-P., Tannous, R., Agne, S., Pugh, C. J., Kuntz, K. B., Higgins, B. L., et al. (2019). <b>Genuine time-bin-encoded quantum key distribution over a turbulent depolarizing free-space channel</b>. <i>Optics Express</i>, <i>27</i>(26), 37214–37223. doi:10.1364/OE.27.037214 

  30. Simon, C., Afzelius, M., Appel, J., Boyer de La Giroday, A., Dewhurst, S., Gisin, N., Hu, C., et al. (2010). <b>Quantum memories: A review based on the european integrated project “qubit applications (qap)”</b>. <i>The European Physical Journal D</i>, <i>58</i>, 1–22. 

  31. Lauk, N., Sinclair, N., Barzanjeh, S., Covey, J. P., Saffman, M., Spiropulu, M., & Simon, C. (2020). <b>Perspectives on quantum transduction</b>. <i>Quantum Science and Technology</i>, <i>5</i>(2), 020501. 

  32. Colangelo, M., Korzh, B., Allmaras, J. P., Beyer, A. D., Mueller, A. S., Briggs, R. M., Bumble, B., et al. (2023). <b>Impedance-matched differential superconducting nanowire detectors</b>. <i>Physical Review Applied</i>, <i>19</i>(4), 044093. doi:10.1103/PhysRevApplied.19.044093 

  33. Aktas, D., Fedrici, B., Kaiser, F., Lunghi, T., Labonté, L., & Tanzilli, S. (2016). <b>Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography</b>. <i>Laser & Photonics Reviews</i>, <i>10</i>(3), 451–457. doi:https://doi.org/10.1002/lpor.201500258 

  34. Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H., & Ursin, R. (2018). <b>An entanglement-based wavelength-multiplexed quantum communication network</b>. <i>Nature</i>, <i>564</i>(7735), 225–228. doi:10.1038/s41586-018-0766-y 

  35. Appas, F., Baboux, F., Amanti, M. I., Lemaítre, A., Boitier, F., Diamanti, E., & Ducci, S. (2021). <b>Flexible entanglement-distribution network with an algaas chip for secure communications</b>. <i>npj Quantum Information</i>, <i>7</i>(1), 118. doi:10.1038/s41534-021-00454-7 

  36. Alshowkan, M., Evans, P. G., Williams, B. P., Rao, N. S. V., Marvinney, C. E., Pai, Y.-Y., Lawrie, B. J., et al. (2022). <b>Advanced architectures for high-performance quantum networking</b>. <i>Journal of Optical Communications and Networking</i>, <i>14</i>(6), 493–499. doi:10.1364/JOCN.450201 

  37. Mueller, A., Wollman, E. E., Korzh, B., Beyer, A. D., Narvaez, L., Rogalin, R., Spiropulu, M., et al. (2023). <b>Time-walk and jitter correction in SNSPDs at high count rates</b>. <i>Applied Physics Letters</i>, <i>122</i>(4). doi:10.1063/5.0129147 

  38. Valivarthi, R., Davis, S. I., Pe textasciitilde na, C., Xie, S., Lauk, N., Narváez, L., Allmaras, J. P., et al. (2020). <b>Teleportation systems toward a quantum internet</b>. <i>PRX Quantum</i>, <i>1</i>(2), 020317. doi:10.1103/PRXQuantum.1.020317